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1 Interatomic and Intermolecular Potentials 
The interaction of atoms, either individually or as components 
of molecules, is determined by potentials which are functions of 
the relative positions of these atoms. The cohesion of liquids and 
solids, the sticking of molecules to surfaces, the transport of heat 
in gases, chemical reactivity; all of these can in principle be 
explained or predicted if these potentials are known. For some 
of these phenomena we only need to determine the dynamics of 
bimolecular collisions; others, such as the melting of a solid, are 
macroscopic properties and one needs to involve the statistical 
behaviour of - atoms or molecules. 

All observable properties such as those mentioned above can 
be used on a trial and error basis to determine features of the 
potential: take a potential, calculate the property, and compare 
with experimental observations. If the agreement is good then a 
certain range of the potential will be satisfactory. However, 
individual properties are not sufficiently sensitive to all features 
of the potential, so in general one will need to measure a 
potential against several different properties before one can be 
satisfied with it. The connection between atomic and molecular 
properties and interatomic or intermolecular potentials is a 
subject generally referred to as the theory of intermolecular 
forces, and this has been frequently reviewed.’ In this review we 
examine an important part of this subject, namely the dynamics 
of atomic and molecular bimolecular collisions in crossed-beam 
experiments. The reason for its importance is that this type of 
experiment can in principle provide a more sensitive test of 
potentials than any other. 

If one takes two beams of molecules with narrow ranges of 
velocities, and with the molecules all in the same quantum state 
(electronic, vibrational, and rotational state as appropriate), 
and after crossing these beams in a vacuum chamber measures 
the distribution of products as a function of angle relative to the 
incident beams, each product being separately identified not 
only for its molecular composition but also for its individual 
quantum state, then that is a great deal of information. If the 
experiment is performed for several collision velocities and for 
several initial quantum states then we have even more data, and 
all of this can in principle be explained by potential functions, 
perhaps even a single potential function. 

Let us first be a little more formal about the term potential. An 
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important element of theories of molecular spectroscopy and 
reactivity is the Born-Oppenheimer approximation that the 
motion of electrons and nuclei can be treated as separate but 
linked problems. The basis for this is that nuclei have a much 
larger mass than the electron so that their motion is sluggish 
compared with the motion of electrons. We can conclude that 
electronic states (their wave functions and energies) adjust 
smoothly and instantaneously to movements of the nuclei. 
These energies, when added to the repulsion of the nuclei, 
provide a potential which governs the nuclear motion. 

There are certain features of spectroscopy that can only be 
explained by going beyond the Born-Oppenheimer approxima- 
tion. In these cases the quantum states cannot be identified with 
a unique electronic wave function. Likewise, there are chemical 
reactions in which the electronic state changes somewhere in the 
passage from reactants to products; these reactions are usually 
referred to as non-adiabatic but they will not be covered in this 
review. 

2 The Theoretical Tools 
Three theoretical techniques are available for calculating the 
motion of nuclei on a potential energy surface; classical mecha- 
nics, quantum mechanics, and semi-classical mechanics. Our 
picture in classical mechanics is that of the snooker table; but the 
atoms are not hard spheres and the motion is in three dimensions 
not two. Our picture of collisions in quantum mechanics is of 
waves breaking around a lighthouse, and we interpret the 
calculations using the fundamental postulate of quantum 
mechanics that the probability of events is obtained by squaring 
the wave functions. 

Quantum mechanics has a well defined classical limit when the 
de Broglie wavelength of the particle, A = h/p,  is small compared 
with the range of the potential. For example, a hydrogen atom, 
moving with a kinetic energy of 0.1 eV has a wavelength of 
approximately 1 8, which is comparable to interatomic dis- 
tances. One would therefore expect to see wavelike properties 
from the collision of such atoms with molecules or solids; such 
properties as diffraction and interference. Heavier atoms and 
higher energies will make these properties more difficult to see 
and in such cases the classical picture is appropriate. Quantum 
mechanics always operates, even for heavy particles. The 
question is whether the characteristic quantum phenomenon 
can be resolved in the experiment. 

The simplest formulation of classical mechanics when the 
interaction potential is complicated and the equations have to be 
solved numerically is that provided by Hamilton’s equations. 
These govern the time dependence of the coordinates q and 
momenta p of the particles; a set of variables q(t) ,  p ( t ) .  For N 
atoms at a given time these variables are represented by a point 
in 6 N  dimensional space, and this point moves along a path 
which is called a trajectory that can be calculated by solving 
Hamilton’s equations. 

Hamilton’s equations are coupled first-order differential 
equations of the form 
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$ p d q  = nh (7) 

where H is the Hamiltonian, which is the sum of the algebraic 
expressions for the kinetic and potential energies 

H = T + V  (3) 

If V is very simple, say a constant or a harmonic function, 
equations ( I )  and (2) can be solved analytically. In other cases 
they must be solved numerically by taking a step by step 
evolution of the trajectory [q(t) ,p(t)] using a Taylor expansion of 
the variables. 

There are two Schrodinger equations in quantum mechanics. 
The one most familiar to chemists is the time-independent 
equation which governs the so-called stationary states or eigen- 
states of the system. This is commonly written 

where H i s  the quantum mechanical Hamiltonian and 4 is the 
wavefunction. 

Schrodinger's second equation, called the time-dependent 
equation, describes the time evolution of the wave function in a 
non-stationary state of the system and is 

At first sight it may appear that the time-dependent Schrodinger 
equation is more appropriate to the scattering experiment than 
the time-independent equation; molecules come from a source, 
collide with one another, and are scattered into a detector. If the 
experiment is to fire pulses of molecules into the scattering 
chamber and to measure not only the angular distribution of the 
products but also their time of arrival at the detector, then the 
time-dependent equation is needed. However, an alternative 
scattering experiment is to have a continuous stream of mole- 
cules coming from the source, and after scattering, arriving at 
the detector. This experiment has no time evolution; a snapshot 
at any time shows the same situation. In this case the observable 
properties can be obtained by solving the time-independent 
Schrodinger equation; both give the same scattering angles. 
Currently the time-independent approach is more favoured 
because normally it is computationally the simpler approach. 
Moreover, all the concepts of scattering theory except collision 
time emerge from this approach and for these reasons we only 
use the time-independent approach in this review. 

Scattering is always a multidimensional problem; even for 
atomic collisions one has both radial (distance between the 
atoms) and angular variables, and for molecular collisions one 
also has variables to describe vibrational and rotational states. 
The computational demands in scattering increase rapidly with 
the number of variables, so that atom-molecule scattering is 
much more difficult than atom-atom, and if atoms are 
exchanged in the scattering process, there is another increase in 
difficulty. 

Quantum mechanical probabilities show the characteristics of 
interference; these are oscillations in the probability which arise 
from cross terms when one squares a wave function. In classical 
mechanics one calculates probabilities directly from trajectories. 
To get interference from classical mechanics one would have to 
take the square root of the probability, but without further 
information this is undefined to within a phase factor 4, for we 
note 

Semi-classical mechanics provides a recipe for assigning a phase 
4 to a classical trajectory. The origins of this lie in the old 
quantum theory of atoms developed by Bohr. His recipe for 
quantization can be written 

where n is an integer and the integral, called the action integral, is 
taken over a complete orbit. In semi-classical mechanics we 
calculate the phase associated with a classical trajectory by the 
formula 

This result can be proved by taking the classical limit of 
quantum mechanics ( h - 0 )  and deriving what is called the 
JWKB approximation to the wave function. 

3 Types of Collision 
The simplest type of scattering experiment to treat theoretically 
is the collision of two atoms when there is no transfer of charge 
and no change in the electronic states of the atoms. We call these 
collisions elastic, the term implying that there is no change in the 
internal energies of the colliding species. 

In a collision, atoms will change their individual translational 
energies; but if the positions of the two atoms are r1 and r2  
(vectors referred to space fixed coordinates) then the positions of 
the centre of mass is 

and the vector of their relative separation is 

Using these variables, called a centre-of-mass or molecule-fixed 
system the translational energies associated with R and Y are 
separately conserved. 
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Figure 1 Newton diagram for the transformation from laboratory 
(vl , v 2 )  to centre-of-mass velocities ( V,v). The laboratory beams have 
been taken as perpendicular. 

Figure 1 shows the relationship between the velocity vectors; 
so-called Newton diagram. In the laboratory we measure the 
deflection angle OL of one of the beams ( I ,  say). What we 
calculate from theory is the deflection angle Oc of the relative 
velocity vector; v does not change its length on collision as do v1  
and v2. The relationship between the two is shown in Figure 2. 
To compare theory with experiment we always have to make this 
transformation from centre-of-mass to laboratory systems: it is 
a little more complicated if there is a change in internal energy on 
collision (for then the length of v changes) or if there is a change 
of mass (for then the ratio of the two components of v about the 
centre of mass point P will change). 

In an inelastic collision there is an exchange of energy between 
the translational motion of the colliding species and their 
internal states but no exchange of atoms. Rotational energy 
spacings are typically 10 ~ * eV, and vibrational energy spacings 
typically 10- eV. If there is sufficient energy in the collision to 
excite vibrations, then rotational energies will also change. 

In reactive scattering there is the added complication that the 
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Figure 2 Transformation from laboratory to centre-of-mass velocities 
for elastic scattering. When rn, < rn2 there is a unique Oc for each OL; if 
rn, > rn2 there are two possible values of Oc for each OL. 

coordinates describing rotations and vibrations will be different 
for reactants and products, and that complicates considerably 
the solution of the quantum mechanical problem. 

To summarize: we have three types of collision which in order 
of complexity are elastic, inelastic and reactive; we have three 
types of theory which in order of computational difficulty are 
classical, semi-classical, and quantum. For elastic scattering of 
atoms we can easily carry out all three types of calculation and 
make useful comparisons of the results. At the other extreme, for 
reactive scattering only classical calculations are easy, and it is 
only in recent years that full quantum mechanical calculations 
have become feasible. 

The formal proofs of mathematical relationships and descrip- 
tions of the numerical methods used to calculate scattering cross 
sections are not given in this review. Most are covered in our own 
book on the subject2 and there are many other valuable texts, 
mostly written at the postgraduate level. 

4 Atom-Atom Elastic Scattering; Classical 

Figure 3 shows a typical classical trajectory (cm coordinates) for 
two atoms interacting under a repulsive potential. A particle of 

Mechanics 

0 

Figure 3 Parameters for central field scattering. 

effective mass p = WZAWZB/(WZA + ms) comes in along a line paral- 
lel to the z-axis in the xz plane, is scattered by V(r) centred at 0, 
and disappears to infinity along a line making an angle 8 with the 
z-axis; 8 is called the deflection angle. 

The kinetic energy of relative motion is 

where i. = dr/dt, etc. It is easier to solve the problem in polar 
than in Cartesian coordinates, so writing 

x = rsinO, z = rcosO (12) 

and taking derivatives with respect to time we find 

The total energy is obtained by adding to this the potential, 

The angular momentum of the system is defined by the vector 
product 

which is directed along the y axis. Angular momentum like the 
energy is unchanged during the trajectory. In polar coordinates 
its magnitude is 

and if this is introduced into equation 14 we have 

(17) 
1 . L2 
2 2pr2 

E = - p r 2  + - + V(r )  

L2/2pr2 is the centrifugal potential; it acts as a repulsive compo- 
nent, which has to be added to the central force potential when 
we solve the dynamics as a one-dimensional problem in r .  

Figure 4 shows some effective potentials VL(r) for several 
values of L. V(r) generally decays faster than the centrifugal 
potential at large r; typically as r P 6  so that for non-zero L the 
centrifugal potential is always the dominant term at large r ,  the 
exception being potentials between ions. For small values of L 
there is a centrifugal barrier at large r and the centrifugal 
potential reduces the depth of the potential well (as in Figures 4b 
and 4c). At some critical value of L the centrifugal potential is 
just large enough to remove completely the well in the effective 
potential (as in Figure 4d) so for values of L above this, VL(r) is 
wholly repulsive. 

The dashed line in Figure 4 shows a possible collision energy 
and we can think of the atoms coming in along this line from 
r = 00 until they meet VL(r).  This point, the smallest value of r in 
the trajectory, is called the classical turning point (r,  in Figure 3), 
for after this r increases with time as the atoms depart from each 
other to infinity. At small values of L, r, occurs in the repulsive 
region of the potential well, but for large L the classical turning 
point occurs in the region of the centrifugal barrier. Whether or 
not a trajectory surmounts a centrifugal barrier or not depends 
on the collision energy. However, at large L the classical turning 
point is always determined by the centrifugal barriey. 

From equation 16 we obtain an expression for 8 and from 
equation 17 an expression for i. and dividing one by the other we 
obtain 

dO-8-  L _ - _ -  f 
dr i pr2{2(E- V,,(r)}: 

The positive sign applies to the inward part of the trajectory ( r  
decreases as 8 decreases) and the negative sign to the outward 
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Figure 4 Effective potentials for atom-atom scattering. (a) L = 0; (b), 
(c), (d) L f 0. (a) and (b) have one classical turning point, (c) has three 
turning points, and (d) shows an inflection point ( L  = 55) .  

part. If we integrate from Y = co (6  = TT) to the classical turning 
point ( Y  = Y,) and then back to infinity the final value of 6 will be 
the deflection angle. Writing the total integral over Y as twice the 
integral from Y, to co, we have 

m 

It is useful to introduce an important quantity, labelled b in 
Figure 3, called the impact parameter. A head-on collision has 
b = 0, a completc miss is at such a large value of b that V(b) = 0. 
The angular momentum, energy, and impact parameter are 
related by 

so that the expression for the deflection angle can be written in 
terms of E and b as 

dr s r2{ 1 - [g] - ?}+ B(E,b) = n - 2b 

' C  

This integral can be solved analytically in only two cases of 
interest. One of these is for a hard-sphere collision 

V(r) = 0, r > d; V(r) = ac, r < d (22) 

where dis the sum of the radii of the two hard-sphere atoms. The 
result is 

(23) 
O b  
2 d  

cos- = - 

which we note is independent of E. The other case is the repulsive 
coulomb potential 

B V(r)  = - 
r 

( B  > 0)  

for which 

V I  \ 
d) 

r 

O(E,b) = 2sin- 

For neutral atom scattering we must consider potentials of the 
type shown in Figure 4a. For large impact parameters the 
trajectory only experiences the long range part of the potential 
and in this case trajectories will be bent towards the scattering 
centre. To preserve continuity between b and 6 ,  the deflection 
function is defined as a continuous function between 7~ and - GO. 

The general form of O(E,b) for collisions in which E is large 
compared with the depth of the well is as shown in Figure 5 .  

For atom-atom scattering there is no experimental way of 
distinguishing between the deflection angles 6 and - 6;  only I 6 I can be measured and this is called the scattering angle. 
Thus in Figure 5 the b values corresponding to the crosses 
contribute to the same scattering angle. 

0 

n 

0 

\ G i o r y  

yVx 
Rainbow 

t 

Figure 5 Typical deflection function for atom-atom potentials when the 
collision energy is large compared with the well depth. The crosses 
show the three impact parameters that scatter into 8 = 50". 

To calculate a quantity which can be related to experimental 
measurements we must consider a stream of particles coming in 
with cylindrical symmetry parallel to the : axis and being 
scattered into a cone by the scattering centre. Figure 6 illustrates 
an annulus of the incoming beam with impact parameter lying 
between b and b + db, being scattered into a conical section 
between 6 and 6 + do. Particles crossing the area 
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Figure 6 Parameters for the derivation of the cross-section for central 
field scattering. 

are scattered into the solid angle 

Results are described by a quantity called the cross-section 
which is the notional area of the incident beam scattered into a 
given unit solid angle. As all of the trajectories crossing dA go 
into the solid angle dQ, the area that goes into unit solid angle is 

This can be rewritten 

5 Quantum Scattering by a Central Force 
We expect readers to be already familiar with the solution of one 
central force problem in quantum mechanics, which is the 
electronic energy levels of the hydrogen atom. The Schrodinger 
equation for this system is most easily solved by taking spherical 
polar coordinates as variables and separating the wave function 
into a product of angular functions and radial functions. 

Formally the Schrodinger equation for central force scatter- 
ing is very similar to that for the hydrogen atom, differing only in 
the replacement of the coulomb potential between an electron 
and a proton by the atom-atom potential. For bound-state 
problems the wave functions must approach zero when Y 
approaches infinity; this condition produces quantization of the 
energy levels. In the scattering problem the wave functions arc 
not zero at infinity, instead they must represent the atoms 
coming together initially along straight lines and departing from 
one another in some angular pattern. 

The wave function exp(ikz) represents a stream of particles 
moving with momentum kh in the direction of increasing z; it is 
called a plane wave. We can show this by noting that this 
function is an eigenfunction of the momentum operator 
- ih (d/dz) with eigenvalue kh. After the collision, when the 
atoms are well away from the collision region, we have particles 
still moving with momentum k but they are moving out in all 
directions. If the particles were moving isotropically they would 
be described by a wave function 

exp( ikr) 
r 

which is called a spherical wave. The r in the denominator is 
required to preserve probability within a given solid angle. 

To introduce anisotropy into the scattered wave, we use the 
function 

r 

wheref’(8) is called the scattering amplitude. Only one angular 
variable is needed for central force scattering as the scattering 
has cylindrical symmetry about the z axis. 

We can now establish the boundary conditions on the wave 
functions through the asymptotic expression 

where, by taking the modulus, we allow for the fact that each b 
value contributes positively to 8 whatever the sign of sin8 or do/ 
db. If there are several b values contributing to the same 
scattering angle 8, we add their individual terms such as equation 
29. By integrating ~ ( 8 )  over 8 we obtain a total cross-section 

If the cross-sections are calculated for the hard-sphere potential 
from equation 23, we find U(8) = d2/4 and u = xd2; the latter 
agrees with our intuitive expectation. 

We note that ~ ( 8 )  is infinite if either sin8 = 0 or (d8/db) = 0. 
The former is called a glory and the latter a rainbow. Both of 
these will occur if the potential has both attractive and repulsive 
branches. However, the classical picture of associating specific 
trajectories (b values) with each scattering angle is not the whole 
truth. In quantum mechanics such specificity is forbidden by the 
uncertainty principle; in a sense each impact parameter gives 
some contribution to scattering at all angles. Nevertheless, the 
classical picture is qualitatively correct. Although infinities do 
not occur in experiments, the presence of strong scattering at 
certain angles does, and these are associated with the classical 
glories and rainbows. 

where - indicates the limit as Y -+ co. What we do not know is 
the form of the wave function in the interaction region (where 
the interatomic potential is non-zero), and to find this we must 
solve the Schrodinger equation with this boundary condition. 

The Schrodinger equation for the system is 

and by introducing the variables 

(35) 

this takes the simpler form 

[V*  + k 2  - U(r)]+(r) = 0 (36) 

A general solution to this can be obtained as an expansion in 
Legendre functions 

(3 7) 
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Figure 7 Radial wave-functions for an Ar-Ar potential. 

which is called the partial wave expansion. 

radial wave functions $/(Y) are solutions of 
On substituting equation 37 into equation 36 we find that the 

[-$ + kZ - Ul(r) $(r) = 0 1 
where 

1(Z+ 1) U,(r) = U(r) + ___ 
r2  

(38) 

(39) 

is the effective potential. Notice its close similarity to the 
effective potential that occurs in classical theory (equation 17), 
the difference only being the replacement of L2 by h2(1(1 + l)}, a 
familiar feature in quantum mechanics. 

There are two linearly independent solutions of equation 38 
for each value of k2 and 1. However, only one of these is 
physically acceptable and that is the one which is zero at Y = 0; 
called the regular solution. Figure 7 shows typical functions. 
When r reaches a value such that U,(r)  can be neglected, the wave 
functions have the form 

$(r) - sin(kr + (40) 

However, it can be shown that the centrifugal potential contri- 
butes - h / 2  to the phase q1 so the effect of U(r)  alone is measured 
by 

6/ = 7, + tT 
2 

which is called the phase shift. Broadly speaking, the repulsive 
regions of U(r) give negative contributions to and the attract- 
ive regions give positive contributions. Figure 8 shows the 
dependence of the phase shift on 1 for the same interatomic 
potential used for the classical calculation shown in Figure 5. 

To derive the relationship between the scattering amplitude 
f(6) and a1, we can equate the asymptotic form of equation 37 
which is 

with the asymptotic form, which represents the physical situa- 
tion in the crossed-beam scattering experiment. To do this 
involves some standard but rather tedious algebra. The result is 

The scattering cross-section can be deduced from the amplitudes 
of the incident and scattered waves in the asymptotic wave 

VJ 

1 
20 

0 

-20 

Figure 8 The variation in 6, for an Ar, potential. The collision energy is 
twice the well depth. 

function. In the incident beam the particles have a probability 
density 

and in the scattered beam the probability density across an area 
of the sphere which subtends the unit solid angle at the centre is 

The differential cross-section is the ratio of these two quantities, 

On replacingf(6) by the partial wave expansion (equation 43) we 
obtain the following expression for the cross-section 

x (eZrSI' - 1)Pl(cos8)Pr (cos8) (47) 

in which we note that there are interference terms (cross terms) 
between 1 and I' partial waves. The expression for the total cross- 
section is rather simpler because on integrating over 6, we can 
make use of the orthogonality of the Legendre polynomials so 
that only the terms with 1 = I' persist. 
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For atomic collisions, at the energies normally encountered in 
laboratory conditions, one generally needs at least a hundred 
partial waves to obtain convergence of the cross-sections. An 
estimate of the maximum value of 1 which is needed can be 
obtained from the classical expression equation 20 by compar- 
ing the impact parameter with the range of the interatomic 
potential. 

ing associated with a deflection function of the type shown in Figure 8. 
The calculations were made for an Ar, potential and a collision energy 
equal to twice the well depth. 

for Ar-Ar scattering at a collision energy equal to twice the well 
depth (-0.04 eV). Approximately 200 partial waves were 
needed to obtain convergence. The fine oscillations arise from 
the cross terms ( I  + 1') in equation 47 and the broad oscillation 
with a peak at 0 z 7~/3 is associated with the classical rainbow. 

When a large number of terms have to be included in the 
partial wave expansion, a number of approximations can be 
made to simplify the calculation. Moreover, if one makes use of 
the semi-classical approximation to the wave function, then one 
can show that for heavy atom scattering the quantum mechani- 
cal cross-section is consistent with the classical expression 
equation 29. 

I I I C I d S L I L  LUlIISIUII3  d l C  I I I I p u l  L d l l L  1J'ULCSSGS I W I  LllC CSLdUIISIIIIICIIL 

of equilibrium populations of vibrational and rotational energy 
levels in gases and liquids. In crossed molecular beam experi- 
ments we can study the exchange of translational and rotational 
energies, so called T-R exchange, or translational and vibratio- 
nal energies (T-V exchange). Both of these depend mainly on 
collisions which probe the repulsive part of the inter-molecular 
potential, and a hard potential model can reproduce many of the 
important features. The main exception is if there is a strong 
long-range term in the interaction potential, e .g .  for ion-dipolar 
molecule collisions. 

Although molecular collisions occur at all orientations, the 
strongest T-V exchange is expected when atoms collide along 
the direction of their attached bonds so the collinear atom- 
diatomic molecule collision is an interesting model. If the atoms 
are hard, the energy transferred in the collision depends on the 
phase of the diatomic oscillator at the moment of impact, the 
largest transfer occurring when the relative velocity of the 
colliding atoms is largest. Qualitatively, a similar result is 
obtained if the interaction potential is soft. 
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Figure 10 Relationship between the energy transfer and the oscillator 
phase for a soft collinear collision with parameters chosen to model 
He + H,. The initial quantum number is n, = 1. 

Figure 10 shows the results of classical calculations with 
parameters chosen to model He + H,. The H, is represented as a 
harmonic oscillator whose energy can be represented by 

although in the classical model, the quantum number n is not 
restricted to integer values. The interaction potential was taken 
as an inverse exponential of the distance between the colliding 
atoms. 

The question now arises as to how one should interpret these 
classical calculations. We can easily deduce an average T-V 
energy transfer by averaging over the phase 4, but for state-to- 
state cross-sections we must go further. Two methods have been 
used; one called quasi-classical, the other semi-classical. In the 
quasi-classical method one assigns any trajectory that has a final 
value of n between k - f and k + + to the quantum state k .  Thus 
if we run N trajectories, uniformly or randomly distributed over 
the initial phase 4, and Nk of these lead to state k ,  then the 
probability of the transition to k is Nk/N.  

In the semi-classical picture we pick out those trajectories that 
end with integer values of n. We see from Figure 10 that there are 
only two values of the phase that lead from n = 1 to n = 2. If 
trajectories with phases between 4 and 4 + 84 lead to a final 
quantum number between n and n + an, then the contribution to 
the probability from this set of trajectories is 

Taking the limit (6-+0) and summing over all trajectories 
leading to the specified final n gives 

As we shall see later, this approach taken at the best semi- 
classical level gives state-to-state transition probabilities which 
agree quite well with the quantum results. 

7 The Classical Picture of T-R Exchange 
In the collinear collision model we can define transition probabi- 
lities but not cross-sections, either total or differential. For this 
we must have 3D collisions, and these will produce T-R energy 
transfer. The simplest model is the collision of an atom and a 



24 CHEMICAL SOCIETY REVIEWS, 1992 

rigid rotor diatomic molecule, with the interaction potential 
between these being a 'hard' shape. 

Angular momentum is conserved in a collision and for atom- 
molecule collisions the angular momentum consists of two 
parts: the orbital angular momentum of the relative motion of 
the centres of mass (the equivalent of L in elastic scattering) and 
the rotational angular momentum of the moleculej. As both of 
these are vector quantities, the total angular momentum is 
J = L + j .  This vector coupling leads to some standard but 
rather complicated algebra in the theory of rotational inelasti- 
city. In two dimensions (co-planar collisions), j and L are 
perpendicular to the plane of motion, and hence the magnitude 
of the total angular momentum is eitherj + L or I j - L 1 . 

1 

t 
Figure 11 Effective impact parameter for a two-dimensional hard 

potential. 

Figure 11 shows a 2D hard potential that might apply to the 
collision of an atom and a small polyatomic molecule. The 
molecule will have its rotational energy changed by a collision if 
the impact force (which is perpendicular to the perimeter curve) 
does not pass through its centre of mass. The torque is pro- 
portional to the perpendicular distance from the centre of mass 
to the line of force; we call this the effective impact parameter 6,1. 
Figure 12 shows the function b,(8) for the shape shown in Figure 
11. The most important feature is that b,(6) has maxima and 
minima. Collisions at these points on the perimeter give the 
largest changes in rotational energy; more important, they 
dominate the energy change because 6, changes slowly as the 
point of collision moves away from these points. 

If one has a mathematically defined hard shape potential, then 
from the equations conserving energy and angular momentum, 

Figure 12 Effective impact parameter as a function of orientation angle 
for the potential of Figure 11 

the change in rotational angular momentum can be deduced for 
different scattering angles as a function of 6,1. Cross-sections can 
then be deduced for each pair of initial and final rotational states 
of the molecule (characterized byj, andjf). The relevant formula 
is a generalization of that given for elastic scattering (equation 
29) ( a  is the initial angle of the molecule relative to the line of 
collision). 

As for elastic scattering this expression has the possibility of 
singularities when the two terms appearing in the square brack- 
ets are zero or cancel. These so-called rotational rainbows 
appear as dominant features of the differential cross-sections for 
each pair of initial and final states, although, as with elastic 
scattering, quantum mechanics will smooth out the classical 
infinities. 

8 Quantum Mechanics of Inelastic Scattering 
For molecular scattering the wave function depends on the 
vector r of relative motion of the two centres of mass and on a set 
of internal variables s which are associated with the vibrational 
and rotational states of the molecules. As r approaches infinity 
the interaction potential V(r,s) approaches zero and the wave 
functions can be written as products of continuum functions for 
the relative motion and the wave functions for the discrete 
internal states. 

It is not possible to obtain the asymptotic form of the 
scattering wave function by direct numerical integration of the 
many-dimensional Schrodinger equation with this boundary 
condition. The procedure normally followed is the one used to 
find the bound states of many-dimensional systems with non- 
separable potentials, namely to make an expansion of the wave 
function in a set of known functions, which is called the basis set 
(e.g. the well known LCAO expansion in molecular orbital 
theory). For scattering wave functions the basis covers only the 
internal variables s. 

Two types of basis are commonly used, one depending only on 
s and the other that depends on both Y and s. The former leads to 
what is called the diabatic representation of the wave function 
and the latter to an adiabatic representation. Adiabatic bases are 
more complicated functions and may be difficult to obtain, but 
to compensate for this one should need fewer of them to provide 
a specified computational accuracy. 

Both the diabatic and adiabatic sets must represent the 
eigenfunctions for the internal motion of the molecules in the 
asymptotic region. Thus if the diabatic set are the functions x,{s) 
the adiabatic set cl/{r,s) will satisfy the condition 

To derive the multi-channel equations we write the total Hamil- 
tonian as 

where the interaction potential V depends only on the scalar 
distance between the interacting species; it is of course depen- 
dent on the orientations of the molecules relative to r ,  but these 
angles are in the set of internal coordinates s. 

In the diabatic basis we expand the total wave function as 

where xxs) ,  the eigenstates of. HO, are an orthonormal set 
satisfying 
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The Schrodinger equation then takes the form 

This can be converted to a set of coupled equations in Y by 
multiplying in turn by each of the basis functions and integrating 
over s. Making use of the orthogonality of the basis, a typical 
equation is 

where 

Equations 58 and 59 are called the multi-channel equations. 
They can be thought of as a set of elastic equations, one for each 
basis function, which are coupled together by off-diagonal 
elements of the interaction potential V,(Y); Vii and EP are called 
the channel potentials and channel energies respectively. 

Similar equations are obtained from an adiabatic basis. The 
basis functions are in this case defined by 

and if one substitutes 

into the Schrodinger equation and forms matrix elements with 
the basis functions, one gets a set of coupled equations in which 
the coupling arises from the kinetic energy operator V 2 ( v ) .  

Both the diabatic and adiabatic expansions provide, in princi- 
ple, an exact description of the wave function; in quantum 
mechanical terms we say the bases are complete. However, in 
practice we must take a finite rather than an infinite number of 
terms in the expansions. The finite set of multi-channel equa- 
tions is called the close-coupling equations. 

T o  progress further with the coupled channel equations for 
full three-dimensional scattering we have to make a partial wave 
expansion of $(r). This leads to rather complicated equations 
which reflect the fact that the orbital angular momentum of one 
molecule around the other is coupled with the rotational angular 
momenta of the molecules, only the total of these being con- 
served. However, no such complications arise for the collinear 
collision model of vibrational inelasticity so we will briefly look 
at this example for the collinear collision A + BC discussed in 
Section 7. 

With the diabatic basis we must evaluate matrix elements such 
as 

where the xi(Rec) are harmonic oscillator eigenfunctions. In this 
expression Y is the distance between A and the centre of mass of 
BC. Taking the case where B and C have equal masses, for 
simplicity, we have 

so that when the integration over RBC is carried out the result is a 
function of Y .  This is where the coupling arises from; if the 
interaction potential were an exponential in Y alone, there would 
be no T-V exchange. 

We will not give details of how the multi-channel equations 
are solved beyond the fact that one integrates numerically from 
Y = 0 out to a sufficiently large value that the scattering wave 
functions are strictly periodic, and this is done for each of the 
internal states in turn. As Y goes to m the wave function picks up 

contributions from other internal states. This complete set of 
wave functions (one for each internal state) is then taken in 
linear combinations so as to match the asymptotic condition 
required of the scattering wave function. If we want a wave 
function that represents the system in an initial internal state i, 
emerging in final statesj, then we write thejth component of this 
wave function (i.e. the function $,-(r) in equation 55  as 

We have an incoming wave which is non-zero only for the ith 
component, and outgoing waves exp(ik,r) for all energetically 
accessible channels. Channels are characterized by their wave 
vectors k which, from equation 35, are defined by 

If the total energy E is greater than the channel energy E: the 
transition i j j i s  allowed in the collision; k, is real and we say the 
channel is open. If E is less than EP, i+j is energetically 
forbidden, k, is imaginary, and the channel is closed. Although 
closed channel functions may be included in the basis (in 
equation 56) to improve accuracy in the interaction region, they 
must have zero amplitudes in the asymptotic wave functions. 

S,, are elements of a matrix called the scattering or S matrix. 
The factor (k,/k,)h is also included in the amplitude so that the 
square modulus of S gives directly fluxes of particles not just 
probability densities; note that the ratio of velocities appeared in 
equation 53 for the classical cross-section for the same reason. 

2.5 4.5 6.5 

Etotal 1 90 
Figure 13 Quantum mechanical transition probabilities for the collinear 

collision of an atom and a harmonic oscillator with parameters 
modelled on He + H2(a = 0.314, m = 2i3). 

Figure 13 shows the transition probabilities calculated for 
He + H,, with the H, being initially in the quantum state n = 2, 
as a function of the collision energy. Channels 0 and 1 are open 
at all energies, but note that the probability for 2 -+ I is consider- 
ably greater than 2 -+ 0. Channel 3 becomes open at E = 3.5hv0 
(hvo being the harmonic oscillator interval) and 2 -+ 4 at 4.5hvo. 
The transition probabilities increase slowly for energies in excess 
of the threshold, and the elastic component 2 - + 2  decreases 
accordingly to conserve total probability. 

Table 1 compares transition probabilities for several initial 
and final states as calculated by quantum, classical, and semi- 
classical methods. Of the two semi-classical methods the simpler 
is the one described earlier in this review and the uniform is a 
better approximation to the quantum mechanical results, as is 
evident from the results. Note particularly some cases where the 



26 CHEMICAL SOCIETY REVIEWS. 1992 

Table 1 Transition probabilities for He-H, collisions at an 

Transition Quantum Classical Semi-classical 

n1 n2 Simple Uniform 

energy of IOhv, (-4.5 eV) 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

0 
I 
2 
3 
4 
1 
2 
3 
4 
5 
2 
3 
4 
5 
6 

0.060 
0.218 
0.366 
0.267 
0.089 
0.286 
0.009 
0.170 
0.240 
0.077 
0.366 
0.018 
0.169 
0.194 
0.037 

0 
0.356 
0.2 12 
0.232 
0 
0. I58 
0.130 
0.128 
0.159 
0 
0.2 12 
0.105 
0.114 
0.169 
0 

0 
0.472 
0.416 
0.359 
0 
0.290 
0.009 
0.168 
0.285 
0 
0.416 
0.020 
0.165 
0.262 
0 

0.058 
0.21 1 
0.38 1 
0.266 
0.075 
0.287 
0.01 1 
0.174 
0.240 
0.062 
0.38 1 
0.017 
0. I70 
0. I94 
0.045 

The  table is taken from reference 2 where a fuller description is given of the 
calculations and references to the original work. 

classical and simple semi-classical transition probabilities are 
zero; Figure 14 shows, for example, that I -+ 5 is forbidden. 
However, these channels are open by the criterion of equation 65 
and we can attribute their transition probabilities to the tunnel 
effect (i.e. trajectories that are not classical because they must 
pass into regions where the potential energy is greater than the 
total energy. The uniform approximation of semi-classical 
theory allows for the effect of these non-classical trajectories. 

For the collinear collision problem one may typically need 
about ten basis functions to obtain convergence in the S matrix 
elements, but for rotational inelasticity a hundred or more 
would be typical. There are two reasons for this. First, at the 
collision energies normally met in experiment many rotational 
channels are likely to be open. Secondly, in a collision, particu- 
larly one with a hard intermolecular potential. the free rotor 
basis functions are individually poor representations of the 
motion at the point of impact; typically the motion here is 
libration rather than rotation. 

There has been a great deal of interest in finding approximate 
solutions to the multi-channel equations which are computatio- 
nally less demanding. The first method to be explored was an 
iterative solution suggested by Born. Unfortunately, in practice 
convergence is usually very slow for molecular collisions. 

The most commonly used approximations to the multi- 
channel equations come under the description ‘sudden’, the term 
implying that the inelastic processes occur in a time that is short 
compared with the periods of internal motion. Mathematically 
the situation is this: if one could find a linear combination of the 
basis functions such that the potential energy matrix V J r )  was 
diagonal, we would have removed this source of coupling, but it 
would be at the expense of introducing off-diagonal coupling 
terms in EP - E. However, if the total energy is large compared 
with the internal energies of the states that are populated, then 
we can replace all the EY - E by some average ( A @  and in that 
case after diagonalizing V,  LIE will still only appear on the 
diagonal. Likewise, in 3D scattering one has a centrifugal term 
on the diagonal 1(1+ l)r2 and if this is replaced by an average 
l(1 + l ) /r2,  then after diagonalizing V one still has a diagonal 
centrifugal matrix. One can therefore derive approximations 
which are so-classed energy-sudden, or centrifugal-sudden, or 
with both approximations, infinite-order-sudden (10s). The 
latter is very commonly employed and, in some cases, has proved 
to be quite accurate. 

Finally, we should mention the fact that the quantum mecha- 
nics of collisions over hard potentials can be carried out without 
great computational difficulty. For atom-atom scattering the 
solution was found in the early 1930s, but for atom-molecule, 

rotational inelasticity, such calculations are much more r e ~ e n t . ~  
Although one does not avoid the use of multi-channel equations 
in this approximation, the calculations are easier because the 
coupling only occurs at the potential wall, and not over a wide 
range of r;  it is in this sense properly described as sudden. 

9 Reactive Scattering 
Reactive scattering is a category of inelastic scattering in which 
the internal states depend on the manner in which the atoms are 
grouped together in the initial and final states. For example, in 
the simple atom-diatomic molecule exchange reaction repre- 
sented symbolically as 

(67) A + B C + A B  + C 

the internal states will be both BC states and AB states, and if 
there is also the possibility of forming AC molecules or of having 
sufficient energy in the reaction to give A + B + C, then these 
must be added to the list of internal states. 

The quantum mechanical treatment of inelastic scattering 
relies for its success on finding good basis functions for the 
internal states. A prerequisite for this is that the coordinates can 
be separated into an internal set s and scattering coordinates Y. It 
is obviously much more difficult to  make such a separation when 
the internal states encompass reaction than when they do not. 
Because of this the quantum mechanical treatment of reactive 
scattering is much more difficult than that of inelastic non- 
reactive scattering. 

There are two approaches to the coordinate problem. One of 
these is to use different coordinates for the reactants and product 
regions of s. In this case, the basis functions which describe the 
internal states must change with the coordinates and it will be 
necessary to maintain continuity of the wave functions at 
boundaries in the interaction region. The second method is to 
use coordinates which cover the whole space but which are not 
linear transformations of either the reactant or product coordi- 
nates. In this case the best coordinates may depend on the 
specific problem to be solved. The best known of these is the 
Marcus ‘natural coordinate system’ for collinear collisions 
which is illustrated in Figure 14. The reaction coordinate, pr ,  is a 
curve which follows the bottom of the reactant valley, passes 
over the saddle point and exits along the bottom of the product 
valley. The internal coordinate p.r is a vector perpendicular to pr 
at all points. In this figure the reactant and product valleys have 
been drawn in so-called skew coordinates with 

so that the classical expression for the kinetic energy contains no 
cross terms X Y .  

Y l  

Figure 14 The Marcus natural reaction coordinates. 
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The Marcus system has the advantage that it can be tailored to 
the potential so that full use can be made of any separable 
approximations to the potential. However, there are disadvan- 
tages; particularly non-uniqueness in some regions. Other curvi- 
linear systems have been proposed based on transformations of 
rectilinear variables that are independent of the potential func- 
tion. One of these is that of Delves which was developed for use 
in nuclear physics. Starting from a system in which the kinetic 
energy is separable, a transformation is made to polar coordi- 
nates such that 

X = rcosa, Y = rsina (69) 

with u being defined in the range 0 to f l  (the skew angle). 
Delves’ coordinates in polar form are particularly suitable for 

describing the heavy-light-heavy triatomics for which the skew 
angle p is small. They can also be generalized for higher 
dimensions and become what are known as hyperspherical 
coordinates. If there are n dimensions, a coordinate set can 
always be found in which there is only one distance variable, Y, 
and the other n - 1 variables are all angles. 

The advantage of hyperspherical coordinates is that all the 
reaction and product channels are at Y =  co and are dis- 
tinguished by different values of the angular variables. Thus Y 
can be taken as a scattering coordinate for all reactive or non- 
reactive processes. The disadvantage of hyperspherical coordi- 
nates is that the contours of the potential do not follow the lines 
of constant Y or constant angle, so there are very strong coupling 
terms in the potential energy for such a system. 

The choice of variables is a problem for quantum mechanics 
because the wave functions have to satisfy boundary conditions 
which are different for different variables. In classical mechanics 
the matter is much less important because the equations deter- 
mining the classical trajectories can be integrated numerically in 
any coordinate system, although there are advantages in having 
variables that change slowly with time. The classical treatment 
of reactive scattering is much the simpler and we therefore turn 
now to this technique. 

In the classical trajectory method one examines a batch of 
trajectories, with initial conditions chosen randomly and makes 
a statistical analysis of the outcome; this is called the Monte 
Carlo method. The number of trajectories that have to be 
examined depend on the questions being asked. For example, if 
one takes a batch of N trajectories, all conforming with equal 
weight to certain initial conditions, and if N ,  lead to reaction and 
N - N ,  to no reaction, then the probability of reaction is 

and the standard error of this result is 

which is roughly proportional to N - f  if N J N  is a reasonably 
large fraction. To double the accuracy of a result one needs to 
increase the number of trajectories by a factor of four. However, 
if N , / N  is small, the error is proportional to N , - J ;  hence one 
needs more trajectories to obtain a given level of accuracy for 
improbable events, e.g. ifone is interested in knowing what is the 
probability of a product being in a particular vibrational and 
rotational energy state. 

If one considers the initial conditions for an A + BC trajec- 
tory, then in the centre-of-mass coordinate system we have 
twelve conditions to be specified. Some of these will be deter- 
mined by the initial state of the reactants, some will be arbitrary 
(arising from an arbitrary choice of axes) and others will be 
chosen randomly so as to simulate the whole range of collisions 
that can occur. For example, in an ideal state-selected crossed- 
beam experiment BC would be in a well-defined vibrational- 

rotational state so the quantum numbers v a n d j  will determine 
two of our twelve initial conditions. A third is given by the 
relative velocity of A to the centre of mass of BC. 

The initial value of the y relative position coordinate is the 
impact parameter b. In a real collision any value of b is possible 
but the probability of reaction will fall to zero as b goes to 
infinity. In general there is a sharp decrease in the probability of 
reaction beyond a certain value of b and by running a small 
number of trajectories one can establish a minimum value of b 
beyond which no reaction occurs; this is typically a few ang- 
stroms. This minimum value gives the upper limit of h, called 
bmax, which has to be sampled in a batch of trajectories in order 
to simulate all feasible reactive collisions. The usual procedure 
for selecting the b value for a trajectory is to generate a random 
number, 5 ,  between zero and one and to take 

As the area of the cross-section between b and b + db is 2nbdb 
one must weight the result of each trajectory by its b value. 

Finally, one has initial conditions arising from the orientation 
of BC and the phase of the BC vibration at the start of the 
trajectory and these also must be chosen randomly with appro- 
priate weighting. When the trajectory is completed, the coordi- 
nates and momenta must be transformed to the appropriate 
products and analysed to give the distribution ofenergy between 
the relative translational motion and the vibrational and rota- 
tional motion of the diatomic species. The scattering angle in the 
centre-of-mass coordinate system will be given by the angle 
between the incoming vector v, and the equivalent outgoing 
vector for the relative translational motion. From the vibratio- 
nal and rotational energies we can determine semi-classical 
quantum numbers v‘ and j ’ ,  and these can be discretized by 
rounding then; to the nearest integer number, as discussed for 
inelastic scattering. 

The probability of reaction to particular products for specific 
values of v,, v,j, and b is called the opacity function, PR.  The 
reaction cross-section is then 

Equation 73 is the cross-section for reactions that proceed over 
the particular potential energy surface on which the trajectories 
have been calculated. A further complication is that for most 
reactive systems there is more than one surface that emanates 
from the state of the reactants, and the total cross-section is the 
appropriate average for motion on all of these. For example, in 
the reaction 

the total electronic degeneracy of the reactants is six for C1 and 
three for O,, so that there are eighteen different electronic states 
that are asymptotic to these reactants. The ground-state surface 
of C10, is a doublet but has no orbital degeneracy, so that only 
one in nine collisions of the reactants will pass over the ground- 
state surface. If the reaction only proceeds over the ground-state 
surface, which would be the case if all the excited-state surfaces 
had high barriers to the formation of products, then to compare 
the calculated cross-section with experimental quantities one 
would have to multiply equation 73 by a degeneracy factor of 
119. 

In any experiment, even in a molecular beam reaction, there 
will be some averaging over v,, v, and j .  It follows that cross- 
sections such as equation 73 must be weighed by state popula- 
tions in order to compare calculated and experimental results. 
By applying Maxwell-Boltzmann statistics for the state popu- 
lations and velocity distributions in an equilibrium gas, one 
can determine thermally averaged rate constants from 
cross-sections. 
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The quantum theory of reactive scattering is currently an area 
of intense research activity so we give only an outline of the most 
popular approach. 

We have already stressed the difficulty of defining coordinates 
and basis functions for reactive scattering. Another problem is 
that there are frequently a large number of open channels. This is 
particularly true for reactions which must surmount a potential 
energy barrier because this can entail a large energy release in the 
reaction channels with the product molecules produced in a wide 
range of rotational and vibrational states. The number of 
multichannel equations that have to be integrated is usually 
much higher than in a typical inelastic scattering problem. 

It is not surprising that the most intensely studied problem is 
the H + H, isotope exchange reaction. This system has the 
advantage of a small activation barrier and a large rotational 
spacing, so that close to the reaction threshold only a few 
rotational channels are open. We will pass over the early studies 
of the collinear model for this reaction, although they were in 
their time important. Wolken and Karplus4 were the first to 
solve the multi-channel equations for the reaction in 3D using a 
small rotational basis (j = 0 to 6) for reactants and products, 
only the ground vibrational states, and values of the total 
angular momentum up to 12. Different coordinates were used 
for each reaction channel and a transformation from one to the 
other made in the interaction region. The main conclusion from 
this work was that the threshold for reaction was considerably 
lower than that found from classical trajectory calculations due 
to tunnelling through the barrier. 

The simple view of tunnelling is that it is the passage of 
particles into regions where the potential energy is greater than 
the total energy; in consequence the momentum is imaginary in 
these regions. However, of equal importance is the zero-point 
vibrational energy of the system, because this changes as the 
system evolves on the potential energy surface. Calculations on 
1D and 2D models of the H + H, reaction show that the 
threshold energy increases by about 0.06 eV with each additional 
dimension, and this is approximately equal to the zero-point 
energy for the bending mode of the H, transition-state structure. 

Many current quantum calculations on reactive systems use 
hyperspherical coordinates. These were first employed for 
H + H, by Kuppermann and co-workers5 on the collinear 
reaction. Schatz6 later used the method for 3D calculations on 
this system and on C1 + HCl collisions, systems with very 
different /3 values, and showed it worked well. However, the field 
is developing so rapidly that one cannot yet do it justice in a 
review. Zhang and Miller’ have given a valuable list of refer- 
ences to work carried out until 1989. 
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